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Abstract

Objective—The aim of this study was to investigate lung function among toluene diisocyanate 

(TDI) production workers.

Methods—One hundred ninety-seven U.S workers performed spirometry from 2006 through 

2012. Results were compared within the study cohort and with U.S. population measures. A 

mixed-effects model assessed factors affecting repeated forced expiratory volume in 1 second 

(FEV1) measurements.

Results—The cohort’s mean FEV1 and forced vital capacity (FVC) percent reference values, 

although greater than 90%, were significantly lower and the prevalence of abnormal spirometry 

(predominantly restrictive pattern) was significantly higher than in the U.S. population. 

Differences in lung function among workers with higher cumulative TDI exposure were in the 

direction of an exposure effect, but not significant.

Conclusion—We found little evidence of an adverse effect of TDI exposure on longitudinal 

spirometry in these workers. The association between TDI exposure and the increasing prevalence 

of a restrictive pattern needs further exploration.

Toluene diisocyanate (TDI) is recognized as a respiratory toxicant capable of causing 

pulmonary impairment and immunologic disturbances in exposed persons.1 Since the 1950s, 
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numerous studies have been conducted in facilities that produce or utilize TDI.1–5 These 

studies have led to a better understanding of the respiratory effects of TDI exposure, which 

range from self-limited respiratory irritant effects to chronic effects, such as induction of 

bronchial asthma, hypersensitivity pneumonitis, and possibly an accelerated loss of 

pulmonary function.1–5 Some previous studies of working populations exposed to TDI have 

shown both acute pulmonary effects and excess chronic loss of pulmonary function,6–9 

while other studies showed no significant long-term TDI-related effect on forced expiratory 

volume in 1 second (FEV1).10–12

Spirometry measurements are an integral part of medical monitoring programs, which, when 

combined with effective industrial hygiene assessments and early removal of sensitized 

employees from subsequent TDI exposure, may preserve long-term pulmonary health. This 

study reports on lung function parameters and spirometry-defined patterns of abnormality 

among a cohort of potentially exposed TDI workers monitored for up to 6 years. This study 

tested the null hypothesis that lung function parameters [forced vital capacity (FVC), FEV1, 

and the ratio of FEV1/FVC] among TDI workers would not differ from those of comparable 

unexposed members of the U.S. general population, and that the TDI cohort would not show 

a greater rate of annual FEV1 decline than the rate observed for the U.S. general population.

METHODS

Participants

The study population and the data collection methods have been reported elsewhere and are 

briefly reviewed here (L. Cassidy, B. Doney, M.L. Wang, et al, in preparation). A 

multidisciplinary team from industry, government, labor, and academia collaborated to 

conduct medical monitoring and exposure assessment in three U.S. TDI production plants 

from 2006 through 2012. A study site coordinator in each plant registered all eligible 

workers (excluding contract workers), those who performed job tasks that required them to 

work in areas of potential exposure to TDI during any given year and who were able to 

participate fully in the on-site medical surveillance program. Of 269 eligible workers, 197 

participants completed a questionnaire and performed at least one spirometry test during the 

study period. Approval was obtained from both the National Institute for Occupational 

Safety and Health and Dow Chemical Company Institutional Review Boards.

Spirometry Testing

Spirometry testing was conducted by technicians trained by NIOSH staff at three plants 

producing TDI. The tests were done with a SensorMedics dry-rolling seal spirometer, model 

#922 (Occupational Marketing, Inc., Houston, TX), software version 5.05.12, and tests were 

conducted and interpreted in accordance with the 2005 American Thoracic Society/

European Respiratory Society guidelines.13,14 The height measurement methods for some 

participants differed from the guidelines and these difference in methods will be discussed 

later. Tests with at least two acceptable curves showing maximum effort were included for 

analysis. Using prediction equations developed on the basis of data from the Third National 

Health and Nutrition Examination Survey (NHANES III), lower limit of normal (LLN) and 

the percent reference values (%Ref) were calculated for FEV1, FVC, and their ratio (FEV1/
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FVC).15 The LLN approximated the one-sided 95% confidence limit for the expected value 

based on the NHANES III prediction equations. Percent reference values were determined 

using NHANES III spirometry data from healthy, nonsmoking individuals as the 

reference.15 The observed spirometry value from a participant was divided by the predicted 

value from the corresponding reference and then multiplied by 100.

Patterns of spirometry abnormality were defined as follows:

1. Obstructive abnormality was characterized by narrowing of the airways during 

exhalation leading to a decline in FEV1/FVC and a disproportionate reduction in 

FEV1 compared with FVC: FEV1/FVC < LLN; FVC > LLN; and FEV1 < LLN.

2. Restrictive abnormality was characterized by reduced lung compliance causing a 

decline in total lung capacity: FEV1/FVC > LLN; and FVC < LLN.

3. Mixed abnormality was characterized by both obstructive and restrictive 

abnormalities: FEV1/FVC < LLN; and FVC < LLN.

Statistical Analysis

Data analyses were performed using SAS 9.2 (SAS Institute, Cary, NC). Cross-sectional 

analyses included comparisons of %Ref values and the proportion of abnormal spirometry 

between the study population and the U.S. general population, and also within the study 

population. For the U.S. population, we used the NHANES combined 2007 to 2010 datasets 

collected by the National Center for Health Statistics (NCHS). For NHANES 2007 to 2010, 

study participants were selected using a complex, multistage, probability sampling design. 

Participants were interviewed in their homes and asked to attend an examination in the 

mobile examination center that included spirometry for those 6 to 79 years of age. NHANES 

2007 to 2010 was approved by the NCHS Research Ethics Review Board. The NHANES 

website offers detailed information about the surveys.16

For the purpose of comparing the spirometry results for the TDI study participants with the 

U.S. general population, we used spirometry, demographic information, height, weight, and 

smoking history from NHANES 2007 to 2010, and documentation explaining the database 

from the NCHS website using the methods recommended by NCHS.17 Only those persons 

20 to 69 years of age at the time of examination were included. Eight datasets were 

combined and converted to SAS datasets for further analysis and the proper sample weights 

were used according to NCHS analytic and reporting guidelines to account for the NHANES 

complex sample survey.18 SAS PROC SURVEYMEANS and SAS PROC SURVEYFREQ 

were used to obtain the variance estimations and 95% confidence intervals (95%CIs) for the 

means of spirometry indices and the proportions of abnormal lung function stratified by age, 

gender, race/ethnicity, and smoking status that accounted for weighting. Means obtained 

from the TDI study cohort and NHANES 2007 to 2010were compared using the 

corresponding 95% CI obtained from NHANES 2007 to 2010. If the TDI mean fell into the 

NHANES 95% CI, there was no significant evidence of difference between the TDI study 

cohort and the U.S. general population.
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Longitudinal rate of decline in an individual’s FEV1, often called “FEV1 slope,” was 

calculated for study participants by linear regression of FEV1 measurements over time. The 

resulting FEV1 slope was then used as the outcome variable in the two-stage analysis 

comparing average slopes across the various groups of interest within the study cohort, 

including age group, gender, race/ethnicity, smoking status, and TDI exposure categories. 

The cross-sectional comparisons of %Ref values of FEV1, FVC, and FEV1/FVC ratio were 

evaluated using t tests or analysis of variance (ANOVA). The comparisons of spirometry 

indices were also made within the TDI cohort, by age group, smoking status, and among 

four TDI exposure groups by quartiles of ml95.

Exposure Assessment

The development of exposure estimates is described in the study by Middendorf et al19 and 

those that are used in this paper are summarized here. Exposure assessment was conducted 

at the three plant locations. Employees who perform similar tasks that had the potential to 

produce similar time-weighted average (TWA) TDI exposures, based on detailed discussions 

of job descriptions, were grouped into plant-level similar exposure groups (Plant/SEGs). Air 

samples representing shift length duration TWA exposures were collected. Samples were 

collected and analyzed using the Covestro LLC (formerly known as Bayer MaterialScience 

LLC; Leverkusen, Germany) Industrial Hygiene Laboratory Method. All employees in a 

SEG were eligible for sampling whether or not they participated in the study.

TWA Exposures

A method was developed to combine Plant/SEGs that had been determined using job titles 

and professional judgment into data-derived cross-facility SEGs (SuperSEGs), which are 

comprised of one or more Plant/SEGs. For example, Plant/SEGs included TDI loading of 

trucks or railcars, TDI field unit operations, and maintenance in the TDI unit. A total of 

1594 TWA air samples collected during the study were used to represent exposures for 

participants in each SEG. To develop the SuperSEGs, the TWA exposure results, without 

regard to the use of respirators for each Plant/SEG, were categorized into one of the 

following groups: less than 0.1 ppb; 0.1 to <0.5 ppb; 0.5 to <2 ppb; 2 to <5 ppb; and at least 

5 ppb. The bounding categories (<0.1 and ≥5 ppb) were chosen because 0.1 ppb is 

approximately the limit of quantification (LOQ), and 5 ppb was the 8-hour TWA-threshold 

limit value (TLV)® at the time of this study.

Cumulative Exposures

Cumulative TWA exposure estimates for individuals were developed on the basis of the log 

means for the TWA exposure clusters and the length of exposure.19

Peak Exposures

The estimated 95th percentiles for the TWA exposures were used as an index for the 

potential peak exposures. The 95th percentile for the TWA (“ml95”) was determined for 

each worker by assigning that worker’s highest estimate of the 95th percentile among the 

Plant/SEGs in which the worker was employed. It was calculated using a censored 

regression model, assuming a lognormal distribution.
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A linear mixed-effects model approach was also used to analyze the longitudinal spirometry 

data.20 The health outcome variable was the repeated measurement of FEV1. Multiple 

factors potentially affecting the measurements of FEV1 were evaluated as fixed (time-

independent) covariables, including baseline age, height, weight, gender, race/ethnicity, 

plant (Plant A, B, or C), and smoking status. Also evaluated in the mixed effects model were 

time-dependent covariables, including the interval years from the initial test to each follow-

up test, the individual’s estimated cumulative TWA exposure from the initial test to each 

follow-up testing date,19 and the change from baseline in body weight, with values recorded 

at the time of each test.

Mixed-model methodology offers additional capabilities in analyzing longitudinal data. 

Historically, missing data have caused serious problems in the statistical analysis of repeated 

measures, but such problems do not generally arise with the mixed-model approach, as long 

as the missing data are random.20 In this study, 197 participants had from 1 to 12 tests in 1 

to 6 years of follow-up; and the interval between two tests also varied. However, we did not 

detect any patterns or specific reasons for missing results. Most absences were not due to 

health problems and it appeared that failure to attend a health survey was a random event, as 

stated in the study by Cassidy et al (L. Cassidy, B. Doney, M.L. Wang, et al, in preparation) 

SAS PROC MIXED provides a rich assortment of covariance structures, including those 

applicable to unequally spaced data.21

The MIXED model procedure was fitted using the pure RANDOM effective statement. 

Mixed-model methods also permit modeling the covariance structure of the data, which is 

especially important for analysis of repeated measures. The selection of the appropriate type 

of covariance structure was accomplished by choosing the smallest Akaike Information 

Criterion (AIC) after fitting models with alternative covariance structures.22 The final 

MIXED model procedure was fitted using an unstructured covariance to account for random 

variation between individuals in the intercept and slope (the longitudinal rate of change in 

FEV1 obtained from the mixed models for repeated measurements). This structure specifies 

an intersubject random effect for differences between individuals.

Two additional mixed models were performed, the first including only white males, and the 

second model including an addition of a dichotomous marker variable for overweight [body 

mass index (BMI) ≥25 kg/m2, yes or no]23 to further explore the association between weight 

gain and the decline in FEV1. An interaction was evaluated in white males regarding being 

overweight at the time of the spirometry test and the effect of weight gain on FEV1.

RESULTS

Of the 197 participants, there were 18 participants with one test, 19 with two, 16 with three, 

22 with four, 24 with five, 34 with six, 37 with seven, 19 with eight, four with nine, two with 

10, and two with 12 tests. The mean number of tests for each participant in this study was 

5.1. There were 1007 valid spirometry test results included in the data analysis (45 tests for 

12 females, 962 tests for 185 males). Years of follow-up ranged from less than 1 to 6 years, 

with an average follow-up time of 3.6 years.
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Table 1 summarizes the population characteristics and spirometry indices at the initial test 

by gender. The average age at the initial spirometry test was approximately 42 years. The 

age ranged from 21 to 62 years at the initial test and from 24 to 67 years at the final test 

(Table 2). Approximately 64% of the workers were never smokers. The means of %Ref 

FEV1 and %Ref FVC at initial and final tests for males and females were all greater than 

90% (Table 2). When compared with the mean %Ref FEV1 (98%) for the U.S. general 

population, the TDI cohort’s initial (102%) and final (99%) mean %Ref FEV1 were 

significantly higher for females. The initial mean %Ref FVC was significantly higher than 

the U.S. general population (100%) and the final mean %Ref FVC was significantly lower. 

In males, the mean %Ref FEV1 and FVC were 94% and 93% at the initial test and 93% and 

91% at the final test and were significantly lower than the 96% and 99% for the U.S. 

population. The %Ref FEV1/FVC ratio was significantly higher among TDI study 

participants for both females and males. The mean BMI for the TDI study population was 

significantly lower than the U.S. population (Table 2). Additional comparisons between the 

TDI study cohort and the U.S. population were made, stratified by both age and smoking for 

white males only. The results were very similar to the whole TDI study cohort, which are 

presented in Table 3.

The comparisons of spirometry indices were also made within the TDI cohort, by age group, 

smoking status, and among four TDI exposure groups by quartiles of ml95. The difference 

among age groups was as expected. Smoking and TDI exposure effects were detected, but 

were not statistically significant. The comparisons of never versus ever smokers for mean 

%Ref FEV1, FVC, and FEV1/FVC were 94%, 93%, and 101% versus 94%, 92%, and 102% 

at the initial test, and 94%, 93%, and 101% versus 93, 91, and 102% at the final test. None 

of these differences were statistically significant. When comparing the mean %Ref of 

spirometry indices between the workers in the highest exposure group (“ml95” ≥ 75% 

percentile) versus others, or among four groups by the quartiles of the TDI exposure variable 

“ml95,” the differences were in the direction of an exposure effect, but none of these were 

significant (data not shown).

The comparison of prevalence of spirometry abnormalities between the TDI cohort and 

NHANES 2007 to 2010 is summarized in Table 4. The proportion of overall abnormal 

spirometry for male TDI study participants was significantly higher than the U.S. general 

population. However, the further categorization of patterns of abnormality showed that the 

TDI cohort had significantly lower prevalence of obstructive pattern and higher prevalence 

of restrictive pattern. The prevalence of obstructive and restrictive pattern of spirometry 

abnormality was similar in never versus ever smokers in the TDI cohort with 0.8% and 1.4% 

for obstructive and 12.6% and 11.4% for restrictive at the initial test; and 0.8% and 0.0%, 

and 16.5% and 15.7% at the final test, respectively.

FEV1 slope calculated by simple linear regression for 160 participants with at least three 

tests averaged −27.6 mL/year for males (n=151) and −25.8 mL/year for females (n=9). The 

mean follow-up years was 3.9 (range: 1 to 6 years); the mean frequency of tests was 5.9 

(range: 3 to 12 observations). Comparisons of slope between never and ever smokers and 

among four groups of quartiles of TDI exposures were not statistically significant. 
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Participants whose initial age was less than 30 versus at least 30 years, the slope was −21 

versus −33.3 mL/year (P=0.0003) (data not shown).

The parameter estimates and P values obtained from the mixed-effects model analysis for 

the whole cohort including 178 participants (168 males and 10 females) who had at least two 

test results (987 observations in total) are summarized in Table 5. The initial age, height, and 

weight were significantly related to the absolute value of FEV1, as was the spirometry 

testing position (sitting or standing), and the time-dependent covariable of weight gain. The 

initial level of FEV1 differed by race/ethnicity and gender, with black participants 

demonstrating significantly lower values than white and Hispanic participants. Although 

females values were lower than males, there was not enough power to detect statistically 

significant differences (female: n=10 with 43 observations). The effect of smoking (never vs 

ever), and the time-dependent covariable of TDI cumulative exposure up to the time of 

spirometry testing, showed a trend toward declines in FEV1; however, these did not reach 

statistical significance. The parameter estimates indicate that a 1-year increase in initial age 

corresponded to an average 22.6mL decrement in FEV1 (age effect estimated cross-

sectionally), while a 1-year increase in follow-up interval corresponded to an average 

31.4mL decline in FEV1 (age effect estimated longitudinally), after controlling for initial 

age, height, weight, gender, race/ethnicity, plant, testing position, smoking status, change in 

body weight, and cumulative exposure. An additional model including only white males 

(n=118 with 686 observations) indicated that the age effect was 24.5 and 27.7 mL/year, 

cross-sectionally and longitudinally, respectively, after controlling for multiple factors (Table 

6).

The mean BMI for the study population as a whole was significantly lower than the U.S. 

general population (Table 2). At the initial and final testing, the proportion of workers with a 

BMI less than 25 kg/m2, 25 to 29, and at least 30 (categorized as normal, overweight, and 

obese) was about 44%, 35%, and 21% at initial; and 43%, 30%, and 26% at final spirometry 

test, respectively. The study population had a higher percentage of normal BMI and lower 

percentages of overweight and obese workers than the U.S. general population of 32%, 34%, 

and 34% (using data from NHANES 2007 to 2010 for ages 20 to 69). The study population 

gained an average of 0.74 kg over the 3.6 years of follow-up. For the study cohort as a 

whole, a 1 kg increase in weight was associated with an average 11.1mL loss in FEV1 (Table 

5). The additional model including only white males showed similar results that a 1 kg 

increase in weight was associated with an 11.8mL loss in FEV1 (Table 6). To further explore 

the effect of weight gain on FEV1, an additional mixed-effects model with the addition of a 

dichotomous marker variable for overweight (BMI ≥25 kg/m2, yes or no) was investigated. 

An interaction was evaluated in white males regarding being overweight at the time of the 

spirometry test and the effect of weight gain on FEV1. After controlling for the other factors 

in Table 6, the effect of weight gain on FEV1 was much greater for white males who were 

overweight (BMI ≥25 kg/m2 at the time of the test) than those who were not (−16.6 vs −8.2 

mL/kg, P=0.0184).
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DISCUSSION

The TDI study participants showed a lower mean percentage reference value of FEV1 and 

FVC at both initial and final spirometry measurements compared with the U.S. general 

population (2007 to 2010 NHANES) and also with a recent publication of U.S. coal 

miners.24 However, the FEV1/FVC ratio was significantly higher than the above comparison 

populations. The proportion of overall abnormal spirometry for male TDI study participants 

was significantly higher than the U.S. general population; whereas the further categorization 

of patterns of abnormality showed that the TDI cohort had significantly lower prevalence of 

obstructive pattern and higher prevalence of restrictive pattern, as defined in the Methods. 

While hypersensitivity pneumonitis is known to occur in response to TDI exposures, a 

condition that can result in a restrictive pattern on spirometry, no cases were identified in 

this cohort.2–5,25 In addition, variability in measurement technique, as detailed below, seems 

likely to have affected the results.

In this study, 1007 valid spirometry measurements were analyzed. The correct measurement 

of height is very important in the calculation of the appropriate reference values and LLN. In 

the NHANES III survey, standing height was measured without shoes with the subject’s 

back to a vertical backboard. Both heels were placed together, touching the base of the 

vertical board.15 In this study, there was variability across plants because the standing height 

was measured without shoes (as recommended per ATS/ERS guidelines) for only 15% of the 

tests,15 44% with steel toe boots not removed and the shoe heels not subtracted, 41% using 

the computer records of heights measured at the time of hire and asking for confirmation at 

the time of testing. We subtracted an estimated shoe heel height of 2 cm from the “height” 

for those measured with shoes/boots in the database and recalculated the reference value and 

the LLN to further evaluate the means of spirometry indices and the prevalence of 

spirometry abnormality. It did not change the main findings, but resulted in 2% reduction in 

prevalence of overall restrictive abnormality. The testing position also varied; about half of 

the tests were performed in a sitting position. The prevalence of restrictive pattern 

abnormality was higher in testing performed in sitting position (16.1% vs 12.1%, P=0.06).

The prevalence of restrictive abnormality within the study cohort increased about 4% in 

males from the initial (12.2%) to the final test (16.2%) (Table 4). Despite the technical 

limitations described above, a possible effect of TDI exposure should not be ignored 

considering the increase in prevalence of a restrictive impairment within the study cohort in 

the population of participants tested using the same position. The lower prevalence of 

obstructive and mixed abnormalities may partly be due to measurement variability and 

resulting misclassification. The high proportion of never smokers (64%) in the study 

population may also play an important role.

The FEV1 measurements in the study participants were significantly affected by the initial 

age, height, weight, as well as change in body weight and testing positions. FEV1 results 

obtained from different testing positions differed on average by as much as 59 mL, or two 

times the mean annual longitudinal decline. In the mixed-model analysis, the weight gain 

parameter is derived from the measured changes (in both FEV1 and weight) for individual 

participants over the time interval between the date of the initial spirometry and the date of 
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each follow-up test. The parameter estimate for weight gain can be interpreted to reflect the 

reduction in FEV1 associated with a 1 kg weight gain, with both changes occurring over the 

same time interval. After adjustment in the model for other significant factors, the FEV1 

effect attributed to a 1 kg weight gain in this study for white males (Table 6) was on average 

of −11.8 mL/kg, very similar to a previous study of 1884 chemical workers (−2.3 mL/kg).26 

An interaction was evaluated in white males regarding being overweight and the effect of 

weight gain on FEV1 after controlling for the other factors in Table 6. It was found that the 

effect of weight gain on FEV1 was much greater for white males who were overweight (BMI 

≥25 kg/m2) at the time of the test than those whose BMI was in the normal range (−16.6 vs 

−8.2 mL/kg, P=0.0184).

The current study has several limitations. First, the spirometry reference values and 

measurements were affected by variations in height measurements and testing posture. 

Second, no detailed information on smoking history was available to estimate the number of 

pack-years. A third limitation relates to the wide range of interval between tests, from less 

than 1 month to 2.8 years; thus, the mixed-model approach was limited to a pure random 

model and the repeated statement could not be computed appropriately. The American 

Thoracic Society outlines approaches to evaluating lung function decline.27 They report a 

typical loss of FEV1 in adult nonsmokers to be 29 mL/year. A loss of 15% or more after 

accounting for age-associated loss is considered excessive.13,27 Prolonged follow-up is 

recommended for reliable estimates of the rate of longitudinal change in spirometry 

measurements in individuals, and only relatively large changes over 1- to 2-year monitoring 

intervals are confidently identified as abnormal.28–30 It has also been reported that a year-to-

year decline in FEV1 greater than 8% or 330mL should be considered abnormal in working 

populations.30 To effectively interpret serial spirometry results for the purpose of identifying 

individuals likely to have excessive long-term declines in FEV1, a previous study 

investigated the relationship between FEV1 changes observed during routine spirometry 

monitoring and subsequent long-term declines using data from a large occupational 

spirometry monitoring program spanning 30 years.31 Their findings indicated that changes 

in FEV1 between two tests over 1 to 5 years are significantly associated with long-term lung 

function declines. In our study, the follow-up duration ranged from 1 to 6 years, with 

approximately 44% of slopes calculated using repeated measures of FEV1 in 5 to 6-year 

intervals. Although the FEV1 annual decline rate was not excessive for the study population 

at large, a subset of 19 participants were identified who had at least one annual decline of 

FEV1 greater than 350 mL/year or 10%. These are discussed in a companion paper.32 

Monitoring change in FEV1 is useful for assessing adverse respiratory effects in an 

individual, a yearly decline in FEV1 greater than 10% might be an early indicator for 

triggering further evaluation for TDI-induced asthma in the workplace medical monitoring 

and surveillance program. The prevalence of restrictive pattern on spirometry was not 

anticipated in this study population based upon TDI asthma pathophysiologic 

considerations. The prevalence of a restrictive pattern may be partially accounted for by 

methodologic/testing issues, but it increased over time and constitutes an important focus for 

further research to evaluate this observation.
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TABLE 1

Population Characteristics and Spirometry Indices at the Initial Test by Gender (n=197)

Females (n=12) Males (n=185)

Characteristic*

  Age, years 39.8 (5.8, 32–50) 42.1 (9.7, 21–62)

  Height, cm 167.0 (7.0, 155–178) 177.4 (6.8, 160–203)

  Weight, kg 74.3 (17.1, 46–99) 81.0 (15.2, 43–131)

  BMI, kg/m2 26.7 (6.2, 18–36) 25.7 (4.4, 16–41)

  Race/ethnicity

    White (n) 8 (66.7%) 129 (69.7%)

    Black (n) 2 (16.7%) 29 (15.7%)

    Hispanic (n) 2 (16.7%) 27 (14.6%)

  Smoker status

    Ever (n) 4 (33.3%) 66 (64.3%)

    Never (n) 8 (66.7%) 119 (35.7%)

Spirometry index*

  FEV1, mL 3157 (370, 2,599–3,688) 3779 (663, 1,535–5,905)

  FVC, mL 3850 (512, 3,033–4,873) 4689 (828, 2,289–6,815)

  FEV1/FVC 82.3 (4.3, 73.0–87.0) 80.8 (5.3, 57.0–92.0)

  %Ref FEV1 101.6 (9.9, 88.6–120.6) 93.6 (11.9, 43.7–124.1)

  %Ref FVC 101.9 (13.8, 82.1–121.9) 92.5 (11.1, 54.9–120.6)

  %Ref FEV1/FVC 99.5 (5.7, 88.2–106.1) 101.1 (6.7, 72.0–12.3)

*
Data are presented as mean values (SD, range) unless noted otherwise.

BMI, body mass index; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; %Ref, percent reference value; SD, standard deviation.
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TABLE 2

Cross-sectional Comparison of Characteristics and Spirometry Indices Between the TDI Cohort and NHANES 

2007–2010

TDI Cohort (n=197) NHANES 2007–2010 (n=7,704)*

Initial Test Final Test

Mean (SD, range) Mean (SD, range) Mean (SD) 95% CI

Males n=185 n=3,829

  Age, years 42 (9.7, 21–62) 45.3 (10.1, 24–67) 42.7 (0.4) 42.0–43.4

  Height, cm 177 (7.0, 152–203)† 177.0 (6.7, 160–203)† 176.5 (0.2) 176.1–176.9

  Weight, kg 81 (15.2, 43–131)‡ 81.2 (15.3, 42–136)‡ 89.4 (0.5) 88.3– 90.4

  BMI, kg/m2 26 (4.5, 16–41)‡ 25.9 (4.6, 16–43)‡ 28.6 (0.1) 28.3–28.9

  %Ref FEV1 93.7 (12.1, 43.7–124.1)‡ 92.4 (11.6, 55.1–123.5)‡ 96.3 (0.4) 95.5–97.1

  %Ref FVC 92.5 (11.3, 54.9–120.6) 91.3 (11.5, 60.9–118.1)‡ 99.0 (0.3) 98.3–99.7

  %Ref FEV1/FVC 101.1 (6.7, 72.0–112.3)† 101.2 (7.0, 79.5–126.8)† 98.1 (0.3) 97.4–98.7

Females n=12 n=3,875

  Age, years 39.8 (6.0, 32–50)‡ 41.8 (6.4, 34–53)‡ 43.1 (0.4) 42.5–44.1

  Height, cm 167.0 (7.0, 155–178)† 167.0 (7.0, 155–178)† 162.9 (0.1) 162.6–163.2

  Weight, kg 74.3 (17.1, 46–99)‡ 75.4 (17.7, 43–99) 76.2 (0.5) 75.2–77.1

  BMI, kg/m2 26.7 (6.2, 18–36)‡ 27.3 (6.9, 17–38)‡ 28.7 (0.2) 28.4–29.0

  %Ref FEV1 101.6 (9.9, 88.6–120.6)† 99.3 (12.0, 81.2–120.9)† 97.7 (0.3) 97.1–98.4

  %Ref FVC 101.9 (13.8, 82.1–121.9)† 98.8 (14.0, 80.7–119.2)‡ 100.3 (0.3) 99.8–100.9

  %Ref FEV1/FVC 99.5 (5.7, 88.2–106.1)† 100.0 (5.9, 86.3–108.5)† 97.7 (0.3) 97.2–98.2

For the comparison made between the mean obtained from TDI study cohort and the corresponding 95% CI obtained from NHANES 2007–2010: 
if the TDI mean falls into the NHANES 95% CI, there is no significant evidence of difference between the TDI study cohort and the U.S. general 

population. Otherwise, there is evidence of either significantly higher (†) or lower (‡) differences between the means of these two populations.

BMI, bodymass index; CI, confidence interval; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; NHANES, National Health and 

Nutrition Examination Survey; %Ref, percent reference value; SD, standard deviation; TDI, toluene diisocyanate.

*
Variance estimation using SAS PROC SURVEYMEANS for a complex survey design. For the purpose of comparing NHANES 2007–2010 with 

the TDI study, cohort, only NHANES 2007–2010 participants aged 20–69 years were included.

†
Mean of the TDI cohort is significantly higher than the mean obtained from NHANES 2007–2010.

‡
Mean of the TDI cohort is significantly lower than the mean obtained from NHANES 2007–2010.
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TABLE 4

Comparison of Prevalence of Spirometry Abnormalities Between the TDI Cohort and NHANES 2007–2010

TDI Cohort (n=197) NHANES 2007–2010 (n=7,683)*

Initial Test Final Test

N (%) N (%) N (%) 95% CI

Males n=185 n=3,819

  Normal 170 (86.3) ‡ 162 (82.2)‡ 3,376 (89.5) 88.0–91.0

  Abnormal 27 (13.7)† 35 (17.8)† 443 (10.5) 9.0–12.0

    Mixed 1 (0.5) 2 (1.0) 45 (1.0) 0.5–1.4

    Obstructive 2 (1.0)‡ 1 (0.5)‡ 143 (3.8) 3.0–4.6

    Restrictive 24 (12.2)† 32 (16.2)† 255 (5.8) 4.8–6.8

  Total 197 (100.0) 197 (100.0) 3,819 (100.0)

Females n=12 n=3,864

  Normal 12 (100.0)† 11 (91.7) 3,516 (91.3) 90.4–92.1

  Abnormal 0 (0.0)‡ 1 (8.3) 348 (8.7) 7.9–9.6

    Mixed 0 (0.0)‡ 0 (0.0)‡ 49 (1.2) 0.8–1.7

    Obstructive 0 (0.0)‡ 0 (0.0)‡ 99 (2.9) 2.3–3.5

    Restrictive 0 (0.0)‡ 1 (8.3)† 200 (4.6) 3.7–5.6

  Total 12 (100.0) 197 (100.0) 3,864 (100.0)

For the comparison made between the prevalence obtained from the TDI study cohort and the corresponding 95% CI obtained from NHANES 
2007–2010: if the TDI prevalence falls into the NHANES 95% CI, there is no significant evidence of difference between the TDI study cohort and 

the U.S. general population. Otherwise, there is evidence of either significantly higher (†) or lower (‡) differences between these two populations.

CI, confidence interval; NHANES, National Health and Nutrition Examination Survey; TDI, toluene diisocyanate.

*
Variance estimation using SAS PROC SURVEYFREQ for a complex survey design. For the purpose of comparing NHANES 2007–2010 with the 

TDI study cohort, only NHANES participants aged 20–69 years were included; 21 with a missing ‘‘height’’ were excluded.

†
Prevalence of the TDI cohort is significantly higher than the prevalence obtained from NHANES 2007–2010.

‡
Prevalence of the TDI cohort is significantly lower than the prevalence obtained from NHANES 2007–2010.
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